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ABSTRACT 
Libraries arise naturally from the increasing complexity of 
developing scientific applications, the optimization of libraries 
is just one type of high-performance optimization. Many 
complex applications areas can today be addessed by domain- 
specific object-oriented frameworks. Such object-oriented 
frameworks provide an effective compliment to an object- 
oriented language and effictively permit the design of what 
ammount to essentially domain-specific languages. The op- 
timization of such a domain-specific library/language com- 
bination however is particularly complicated due to the in- 
ability of the compiler to optimize the use of the libraries 
abstractions. 

The recognition of the use of object-oriented abstractions 
within user applications is a particularly difficult but im- 
portant step in the optimization of how objects are used 
within expressions and statements. 

Such recognition entails more than just complex pattern 
matching. The approach presented within this paper uses 
specially built grammars to parse the C++ representation. 
The C++ representation is itself obtained using a modified 
version of the SAGE I1 C/C++ source code restructuing tool 
which is inturn based upon the Edison Design Group (EDG) 
C++ front-end. ROSETTA is a tool which automatically 
builds grammars and parsers from class definitions, asso- 
ciated parsers parse abstract syntax trees (ASTs) of lower 
level grammars into ASTs of higher level grammars. The 
lowest level grammar is that associated with the full C++ 
language itself, higher level grammars specialize the gram- 
mars specific to user defined objects. 

‘This work is funded (in part?) by the Department of En- 
ergy’s Division of Mathematical, Information, and Compu- 
tational Sciences under contract number ???. 

The grammars form a hierarchy and permit a high-degree 
of specialization in the recognition of complex use of user 
defined abstractions. 

1. INTRODUCTION 
The optimization of object-oriented libraries and particu- 
larly the applications that use them has been a longstanding 
roadblock to the devleopment of object-oriented scientific 
applications. The desire to encapsulate the increasing com- 
plexity of parallel scientific computations is a natural driv- 
ing force in the continued development of object-oriented 
libraries and frameworks for scientific computing. But the 
inability of the C++ compiler to optimize the use of abstrac- 
tions from such libraries and frameworks forces the use of 
awkward lowlevel interfaces or poor performance from high- 
level interfaces. A standing problem in the development 
of compile-time optimization of user defined object-oriented 
abstractions is the inability of the C++ compiler to recog- 
nize and optimize their use with applications. That they 
are unoptimized by the C++ compiler is essentially because 
they are user defined. 

The preprocessor approach to optimizations is dificult be- 
cause of the complexity of recognizing the use of user de- 
fined abstractions within an application. ROSETTA is a 
tool for automatically building anotated C++ grammars 
and parsers that can recognize complex use of user defined 
abstractions at  compile-time. Coupled with a separate tool 
for introducing source-to-source transformations, ROSE, en- 
tire source-to-source compilers can be constructed that op- 
erate aheadof the C++ compiler and optimize the perfor- 
mance of user defined object-oriented libraries. This paper 
details the use and construction of the recognition phase of 
this optimization approach. 

A Meta-program level is used to define the preprocessor, 
this level is a simple C++ application code. The Meta- 
program defines the manipulation of grammars using the 
ROSETTA library. The output of the Meta-program, when 
it is executed, is source code (written to files). The source 
code is compiled, with the ROSE infrastructure, to form 
a preprocessor specific to a given framework. The Meta- 
program can generate a lot of source code, typically 200,000 
lines, but it can be compiled in under a minute and once 
built into a preprocessor need not be recompiled by the user. 

http://Ilnl.gov


2. ROSETTA 
ROSETTA is a tool we developed for the manipulation of 
grammars. It permits a C++ Meta-program to be defined 
which, when executed, builds tools like Sage 11. It is not 
a novel part of this work to have defined a mechanism to 
generate the Sage I1 source, modified or not. It is a novel 
part of this research work that higher-level grammars can be 
automatically generated in addition to the Sage I1 source. 
This important feature is the mechanism by which critical 
parts of the preprocessor are customized for a framework’s 
abstractions; and automatically generated. 

ROSETTA represents a class library of terminals and non- 
terminals used to define a grammar. It is relatively trivial to 
define the C++ grammar in terms of terminals and nonter- 
minals and associate with the terminals and nonterminals 
application code. We consider an implementation of the 
grammar to be a library of classes representing the different 
language elements defined by a grammar (statements, ex- 
pressions, types, etc.). We use the Sage I1 library as a basis 
for our C++ grammar, but other libraries that implement 
grammars and form the basis of different sorts of compiler 
tools exist[?, ?I. 

2.1 Generation of the C++ Grammar’s Imple- 
mentation 

Figure 1 shows the use of ROSETTA in the Meta-program 
for the construction of the modified version of Sage 11. 

figure* 

Here the example program builds the implementation of the 
C++ grammar (mostly represented as a copy of the Sage I1 
source code with modifications). The output of this appli- 
cation is about 70,000 lines of source code. With the output 
files compiled into a preprocessor and linked with the ROSE 
infrastructure, the final preprocessor parses C++ applica- 
tions and unparses them to generate C++ (identical to the 
input code in format as well as syntacticly). Such a pre- 
processor is of little use for our purposes but forms a trivial 
example of a preprocessor built using ROSE. 

3. SPECIFICATION OF THE BASE LEVEL 
(C++) GRAMMAR 

This section explains the construction of the C++ grammar. 
This step is particularly simple, the default constructor for 
the Grammar class builds the C++ grammar. The code 
which is produced is essentially a modified form of the Sage 
I1 source code. The C++ code produced in this step can 
be compiled with the rest of the ROSE infrastructure to 
produce a preprocessor that parses a C++ application into 
the C+ grammar as defined by Sage 11. This step represents 
steps 1 and 2 above. Numerous features at this level are 
available: 

1. Traversal of the AST to do program analysis 

2. Editing of the AST to introduce transformation 

The remaining problem with this level of representation of 
the users application code’s AST is that: 

1. it is very large 

2. a framework’s high-level abstractions are hidden in the 
C++ syntax 

3. the interactions between a framework’s abstractions 
are hidden particularly deep in the C++ syntax. 

In principle it should not be difficult to recognize arbitrary 
high-level abstractions and their interactions, but our efforts 
demonstrated that it is full of practical limitations. Hence 
the alternative approach we have implemented and present 
in this paper. 

3.1 Generation of a High Level Grammar’s 
Implementation 

This section explains the system of constraints used to de- 
fine higher level grammars (higher level and more specific 
than the C++ grammar). The principle is to include and 
exclude terminals in an existing grammar (the Base gram- 
mar for our purposes is the C++ grammar). Terminals are 
added or removed as desired to define modifications of the 
C++ grammar. As an example, additional terminals can 
be added to define additional types represented by a class 
defined within an object-oriented framework. New termi- 
nals are added through the specification of an existing C++ 
terminal plus constraints. The form of the constraints can 
be varied (and are expressed using C++ code). 

As an example, the specification of a class name could be 
used to define a new terminal in a new grammar specific to 
a class name associated with a framework’s abstraction (as- 
suming the abstraction is an object). The result is a gram- 
mar for which the framework’s abstraction is recognized as 
an implicit type within the higher-level grammar. The use 
of the framework’s abstraction within expressions can be 
recognized through the addition of expression terminals to 
the higher-level grammar. Since all elements of the higher- 
level grammar are built from terminals of the C++ grammar 
with an additional constraint no modifications to the C++ 
language are possible. This is a strength of this mechanism 
since we want to recognize a framework’s abstractions and 
not formally extend the C+-t language. 

To further customize the high-level grammar to a particular 
framework’s abstractions, the addition of a new type ter- 
minal drives the automated introduction of all possible ex- 
pression terminals with the constraint that they are between 
objects of the new added type. The classes represented by 
the new types are further interrogated to define all possi- 
ble expressions (member functions of the framework’s ab- 
straction) represented by the new type. Similarly statement 
terminals are added to represent statements containing ex- 
pressions in the new type. Since the addition of new types 
adds to the number of terminals (and non terminals) in a 
grammar, the size of the grammar’s implementation nearly 
doubles. Since this step is fully automated, the amount of 
additional code generated is not important. Within this ap- 
proach, through the design of the higher level grammars, we 
permit user defined types and their expressions and state- 
ments to be treated as implicit keywords within an user’s 
application. 



// include definitions of grammars, terminals, and non-terminals 
// (objects within ROSETTA) 
#include "grammar. h" 

int main0 
c 

// Build the C++ grammar (generate Sage I1 source) 
Grammar sageGrammar; 

// Build the header files and source files 
// representing the grammar's implementation 

sageGrammar . buildcode (1 ; 
l 

Figure 1: Example Meta-Program for the generation of C++ Grammar  (esentially a modified form of SAGE 
11). 

3.2 Extending the Base Grammar 
Terminals and non-terminals can be easily added to the ex- 
isting grammar by the specification of new terminals. 

A. The inclusion of a new statement type for example 
adds an X statement to the existing grammar. 
Figure 2 shows how to add a new statement to a gram- 
mar. 
figure* 

B. The addition of a new expression to an existing 
grammar is more interesting. 
Figure 3 shows how to add a new statement to a gram- 
mar. 
figure* 
An consequence is that the addition of a new expres- 
sion element forces the creation of any of any possi- 
ble statement (since expressions can be combined into 
statements in so many ways). So a set of all possible 
statement terminals is defined whenever an expression 
terminal is defined. 

0 C. The addition of a new type occurs through a well 
defined mechanism (the addition of a new class type). 
Consequently, with the addition of a new type and 
since expressions could be defined with objects of the 
new type, a whole set of expressions are added to the 
new grammar. Just as with the addition of a new ex- 
pression (above) the addition of the set of expressions 
forces the addition of all possible statements that can 
be defined from the new expressions. 
Figure 4 shows how to build a new higher level gram- 
mar specific to a given user defined array class. 
figure* 
Figure 5 shows a shorter form is possible if we are just 
interested in adding a type is a specialized member 
function (this is an interface issue only). 
figure* 

3.3 Restrictions of High Level Grammars 
At this point the creation of higher level grammars is largely 
dubious since we have only defined a mechanism to recognize 
the occurance of a user defined type within a program tree 

(AST). A similar result could be obtained (perhaps not as 
elegantly) through a traversal of the program tree. The 
point is to go much farther in the definition of the higher 
level grammar and to both expand and restrict the added 
elements defining the higher level grammar. 

The restriction of a user defined type's use is important in 
how it is applied in expressions to define optimizible state- 
ments. For new user defined types representing element wise 
semantics, Statements containing expressions with user de- 
fined functions must disqualify optimization (though a more 
complex transformation can be developed). Figure 6 shows 
a disqualifying case. 

figure* 

demonstrates an example of how the higher level grammar 
must remove this terminal from it's representation within 
the expanded part of the higher level grammar. Thus with- 
out it's representation within the grammar such a defined 
function would not permit the definition of an expression as 
a special (e.g. "X" expression) within the program tree. 

Figure 7 shows an example of restriction (removal of ele- 
ments from the grammar). 

figure* 

3.4 Consolidation of types within expanded 
grammar 

Characteristics of several terminals (within the extended 
grammar) can be consolitated within a single terminal. For 
example the different variations of loop constructs (for state- 
ment, while statement, do-while statement) can be consoli- 
dated within a single terminal within the extended grammar. 

Figure 8 shows such a consolidation of terminals into a single 
terminal. 

figure* 

3.5 Specification of Predefined Semantics 
Although a classification of semantics is not clear at this 
point, we can greatly simplify the specification of numer- 
ous specialized semantics associated with algebras defined 



Terminal & loopstatement = Forstatement I Whilestatement I DoWhileStatement; 
X-Grammar.addTerminal(loopStaternent); 

Figure 2: Example showing the construction of terminal for a loopstatement. 

Terminal & functionExpression = sum I product I reciprocal; 
X-Grammar.addTerminal(functionExpression); 

Figure 3: Example showing the construction of terminal for an expression. 

Grammar sageGrammar ("Cxx-Grammar" ,"Sg", "ROSE,BaseGrammar") ; 

// Build the header files and source files representing the grammar's implementation 
sageGrammar . buildcode (1 ; 

Grammar X-Grammar ("X-Grammar" ,"XG-" ,"ROSE,BaseGrammar" ,&sageGrammar) ; 

// Build a new terminal as a copy of an existing terminal (this leverages the 
// existing terminals implementation and can be sublemented with constraints). 
// Copy a terminal and give it a new name (with a new tag name). 
// The copy is then a child of the copied terminal, parsing the parent triggers the 
// parsing of the children (constraints are tested and a child is built if a constraint 
// test passes, else the parent is built). 
// In the tree hierarchy the new terminal is DERIVED from the parent (thus the doubleArrayType 
// is derived from the ClassType. 
// "specialization" of the X-ClassType terminal). 

// Build a constraint (using the SAGE interface) and add it to the new terminal. 

This makes sense because the doubleArrayType is a 

Terminal & doubleArrayType = X-Grammar . getTermina1 ("ClassType") . copy ("doubleArrayType" , "DOUBLE-ARRAY-TYPE-TAG") 

char* constraintstring - "isS ClassDeclarationO && isSgClassDeclaration0 ->getName 0 == \"doubleArray\"" ; 
doubleArrayType . addconstraint f"dec1arat ion" , constraintstring) ; 

// Adding a terminal to the grammar will automatically place the 
// terminal in the correct location within the tree hierarchy 

X-Grammar . addNewTermina1 (doubleArrayType) ; 

X-Grammar. buildCode0 ; 
/ /  Build the header files and source files representing the grammar's implementation 

Figure 4: Example showing the construction of higher level grammar for a user defined array class. 

X-Grammar. addType ("doubleArray") ; 

Figure 5: Example showing the addition of a new type to a grammar. 

A = B + fooo; // example showing the use of a user defined 
// function foo0 which can't be optimized directly. 

Figure 6: Example showing case that would not be classified as an array statement. 

X-Grammar , removeType (NdoubleArray") ; 

Figure 7: Example showing the removal of a type from the grammar. 

Terminal & forstatement 
Terminal & whilestatement 
Terminal & doWhileStatement = X-Grammar.getTerminal("X-DoWhileStatement"); 
Terminal & 1oopStatement = f orstatement I whilestatement I doWhileStatement ; 
X-Grammar.addNewTerminal(1oopStatement); 

= X-Grammar .getTerminal ("X-ForStatement") ; 
= X-Grammar . getTerminal ("X-Whilestatement") ; 

Figure 8: Example showing the consolidation of terminals into a single terminal. 



on objects (e.g. arrays, particles, etc which are common 
abstractions within scientific computing). 

3.5.1 hasCollectionElernentSemantics 
Collection Semantics imply that operations defined on the 
collection apply element-wise to each of the elements in the 
collection. Array objects typically contain such semantics. 
The specification of this predefined semantics simplifies the 
definition of transformations on objects representing collec- 
tions. 

3.5.2 hasA rraySemantics 
Array semantics imply that operations on the Rhs of an 
assignment are completed before any assignment to the Lhs. 

3.5.3 hasAsynchronousExecutionSemntics 
Asynchronous Execution Semantics imply that operations 
between different operands are independent. Thus the de- 
pendence can be fully resolved through an analysis of the de- 
pendence graph and alias analysis. This is common within 
many array classes for example. 

3.5.4 Examples 
The following example show how such predefined semantics 
are specified for a grammar build around the definition of 
such a type. Figure 9 shows an example. 

figure* 

3.6 Examples 
Adding a new type and Removing user defined functions 
returning new type 

4. IMPLEMENTATION 
The implementation of ROSETTA builds upon SAGE I1 [?I, 
which is built upon the Edison Design Group (EDG) C++ 
front-end. Our work has been greatly simplified by access 
to these two tools. ROSETTA uses a modified form of the 
SAGE I1 which we have developed. The purpose was to 

0 Permit the automate generation of what is essentialy 
a modified version of SAGE I1 

Maintain the SAGE I1 source code (so that we can 
fix minor bugs and make additions (templates, and 
support for new C++ features as supported by EDG)) 

0 Introduce the use of STL (as an outside library) into 
the design of SAGE I1 

0 Remove as many asymetries from the implemention of 
SAGE I1 so that the generation of the code could be 
simplified. 

0 Modify the SAGE I1 source to permit it to be used as 
a basis for all higher level grammars. This required 
naming the classes so that multiple grammars could 
coexist (to build hierarchies of grammars) in the same 
source-to-source compiler. 

While using SAGE I1 as a basis for the grammars that 
ROSETTA generates. ROSETTA the significant capabil- 
ity to define grammers at  the level of BNF notation. C++ 
classes are used to represent terminals and non-terminals 
within the grammar. 

Operators (overloaded operators defined for the terminal 
and non-terminal classes) are used to define production rules. 

5. RESULTS 
We have build high level grammars and used them to rec- 
ognize and classify the use of user defined abstractions with 
numerous applications. The appraoch is particularly sim- 
ple since the grammars can be built automatically from the 
library header files where the classes are defined. Some addi- 
tional information is required if numerous default definitions 
are to be overridden. It is not possible within this paper to 
present the ASTs for the higher level grammers since graphs 
as complex as these are difficult to visualize and we currently 
lack mechanisms for there presentation except for debugging 
purposes. 

6. CONCLUSIONS 
The use of object-oriented frameworks can often require 
compile-time optimization if the abstractions are not suffiently 
coarse grain and the context of the abstractions use is im- 
portant. This is the case for numerous sorts of abstractions 
for which the statements that use them consist of multiple 
expressions. Alternatively, blocks of statements may benifit 
from optimizations where there context relative to one an- 
other can be optimized. Examples could be array class, 
matrix classes, particle classes, finite-element classes, etc. 
Since a library can not readily see the context of how it’s 
elements are juxaposed, only a compile-time tool can readily 
disern the use of object-oriented abstractions within a user’s 
application. With the abstract syntax tree exposed, clearly 
a relatively simple pattern matching approach could be used 
to identify the objects within an applications, but this is not 
enought to be useful. To recognize where transformations 
can be introduced it is required that the use of the object- 
oriented abstractions be identified and classified (into spe- 
cific sorts of expressions, statements, types, symbols, etc.). 
With this level of detail the AST is greatly simplified and 
can be traversed with the intend of optimization, syntax 
checking, etc. This level of recognittion is of far greater so- 
phistication than searching for funtion names as might be 
the limits of the requirements of C or FORTRAN library 
optimizations. The sophisticated level of user defined ab- 
straction recognition presented within this paper is likely 
just as applicable to JAVA, though the extension to other 
languages has not be our focus. The target of its use so 
far has been within the ROSE source-to-source optimizing 
compiler infrastructure. 



// Here we endow the "X" class with predefined semantics 
// to simplify the specification of the transformations 

X . hasCol le c t ionElement Semant i cs (TRUE) ; 
X.hasArraySemantics(TRUE); 
X.hasAsynchronousExecutionSemantics(TRUE); 

Figure 9: Example showing specification of semantics in the grammar. 




